Revealing interpretable object dimensions from a high-throughput model of the fusiform face area

MAX PLANCK INSTITUTE

¹Vision and Computational Cognition Group, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany. ² Max Planck School of Cognition, Leipzig, Germany. ³ Department of Mechanical and Intelligent Systems Engineering, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan. ⁴ McGovern Institute for Brain Research, Massachusetts Institute of Technology. ⁵ Department of Medicine, Justus Liebig University, Giessen, Germany.

- for ecologically important objects.¹
- presented faces.²

 \bowtie

Oliver Contier^{1,2}, Shu Fujimori³, Katja Seeliger¹, N Apurva Ratan Murty⁴, & Martin N. Hebart^{1,5}

- object-selective brain regions.
- 1] Kanwisher & Yovel, Philos. [2] Kanwisher et al., J. Neurosc
- [3] Long et al., J. Vis. (2017)
- [4] Duchaine & Yovel, Ann. Rev.

JUSTUS-LIEBIG-

How do these dimensions manifest in non-synthetic data?

Voxel-wise encoding model using THINGS-fMRI⁸: An openly available, large-scale dataset of fMRI responses to thousands of object images.

Discussion

• Synthetic FFA responses encode a **broad space of object dimensions** Selectivity for human face- and body information confirmed in vivo. • Validity of our approach for unveiling representational dimensions in

• Additional dimensions, e.g. animal faces, scenes, shapes and textures.

References	
Trans. R. Soc. B. (2006)	[5] Murty et al., Nat Commun (2021)
ci. (1997)	[6] Hebart et al., <i>PLoS One</i> (2019)
	[7] Hebart et al., Nat Hum Behav (2020)
Vis. Sci. (2015)	[8] Hebart et al., <i>eLife</i> (2023)