Revealing interpretable object dimensions from a high-throughput model of the fusiform face area
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Introduction How do these dimensions manifest in non-synthetic data?

Voxel-wise encoding model using THINGS-fMRI&: An openly available,
large-scale dataset of fMRI responses to thousands of object images.

* Visual cortex is organized into category-selective regions specialized

for ecologically important objects. Which object features are captured by these dimensions?

» The fusiform face area (FFA) responds highly selectively to visually
presented faces.?

human faces animal faces human faces > animal faces

* However:
1. FFA overlaps with non-face gradients (e.g., animacy, curvature).®
2. FFA activation contains information about non-face objects.*

* Which object dimensions are encoded in FFA response patterns?

body/limbs
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» We leveraged a recent, highly predictive encoding model of FFA that
enables high-throughput tests of functional selectivity.>

» We predicted FFA responses to > 26,000 naturalistic object images
from the THINGS database.®

small round scenes

 We identified core representational dimensions from predicted FFA

responses by learning a sparse positive similarity embedding (SPoSE)’
from 40 million odd-one-out similarity trials. — Interpretable perceptual & conceptual dimensions.

— Not all dimensions are responsive to faces.
High-accuracy FFA encoding model Model FFA responses
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