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Voxel-wise encoding model using THINGS-fMRI8: An openly available,
large-scale dataset of fMRI responses to thousands of object images.

How do these dimensions manifest in non-synthetic data?Introduction1

• Visual cortex is organized into category-selective regions specialized
for ecologically important objects.1

• The fusiform face area (FFA) responds highly selectively to visually
presented faces.2

• However:

1. FFA overlaps with non-face gradients (e.g., animacy, curvature).3

2. FFA activation contains information about non-face objects.4

•Which object dimensions are encoded in FFA response patterns?

Results3

Which object features are captured by these dimensions?

→ Interpretable perceptual & conceptual dimensions.

→ Not all dimensions are responsive to faces.

...

→ Consistent effects not driven by individual participants.

→ Later (sparser) dimensions are less easily predicted.
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How representative are these dimensions for individual subjects?
Discussion4

• Synthetic FFA responses encode a broad space of object dimensions

• Selectivity for human face- and body information confirmed in vivo.

• Validity of our approach for unveiling representational dimensions in
object-selective brain regions.

• Additional dimensions, e.g. animal faces, scenes, shapes and textures.

Revealing interpretable object dimensions from a high-throughput model of the fusiform face area
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Methods2

• We leveraged a recent, highly predictive encoding model of FFA that
enables high-throughput tests of functional selectivity.5

• We predicted FFA responses to > 26,000 naturalistic object images
from the THINGS database.6

• We identified core representational dimensions from predicted FFA
responses by learning a sparse positive similarity embedding (SPoSE)7

from 40 million odd-one-out similarity trials.

Model FFA responsesHigh-accuracy FFA encoding model
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